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We consider the classical continuous Widom and Rowlinson model. We 
follow the general method for describing metastable states proposed by 
Penrose and Lebowitz. Suitably restricting the set of the allowed configura- 
tions, we construct a nonequilibrium state describing a pure phase. Start- 
ing from the natural time evolution of the system, we rigorously prove 
that when both the activities are sufficiently large and close enough to- 
gether, the relaxation time per unit volume can be made very large. 

KEY WORDS: Phase transitions; metastability; relaxation time. 

1. I N T R O D U C T I O N  

A large class o f  systems undergoing phase transitions exhibits the phenom- 
enon of  metastability. The relevant experimental evidence shows that, given 
a system in a state within the range of  the thermodynamic  parameters where 
different phases are in stable equilibrium with each other, it is possible, by 
suitable t ransformations,  to reach nonequil ibrium states that  can be pre- 
served for  a time sufficient to allow the measurement  of  these thermodynamic  
parameters.  The main features of  these states are the following: 

la. Only one the rmodynamic  phase is present. 
lb. A system that  starts in this state is likely to take a long time to 

get out  o f  it. 
lc. Once the system has gotten out, is unlikely to return. 

Nucleat ion theory (1) gives a picture both  suggestive and physically 
sound of  metastability, but  its quantitative predictions, based on the droplet 
model and on suitable approximat ion of  a highly nonlinear set of  kinetic 
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equations, are not satisfactory (1) and a rigorous treatment would be very 
useful also from a phenomenological point of view. 

In the van der Waals model of liquid-vapor transitions the static proper- 
ties of a metastable state can be obtained, extrapolating the free energy from 
the nearby one-phase states. But this theory does not satisfy the general 
principles of statistical mechanics and any attempt to extrapolate from 
stable to metastable states for more realistic systems has to face the lack of 
information about the analytic structure of the free energy near the critical 
boundary. For instance, the existence of a singularity in this region for short- 
range potentials suggested by a general theorem of Lanford and Ruelle C2) 
seems to deny the very existence of such states and would in any case make 
any extrapolation very hard. 

In this connection Fisher ~ has investigated the analytic properties of 
the free energy in the droplet model, showing that, in this case, a singularity 
is actually present, forbidding any real analytic continuation. Langer ~4~ was 
able to get around this difficulty by an analytic continuation whose real 
part can be interpreted as the free energy of the metastable state. But again 
the droplet model is not a rigorous model and furthermore, due to the very 
nature of the approximations involved in the definition of the model, a 
direct dynamical analysis, the only way to check the reliability of these 
states as metastable states, is impossible. 

In this connection it is worth mentioning a recent paper by Binder ~5~ 
where the "static" analysis of the Ising model in terms of clusters is implemen- 
ted from a dynamical point of view by computer simulations. 

A fundamental step forward was made in 1971 by Penrose and Lebowitz~6) 
(PL), who proposed a general method for describing metastable states in 
statistical mechanics. 

They start from what is expected on physical grounds from a recta- 
stable state and give a prescription for making these notions precise. Given a 
finite system K and calling the set of its possible configurations S, the prob- 
lem is to find a subset R of S such that, if we restrict the allowed configura- 
tions of our system as t = 0 to R and assume for them the corresponding 
weights of the Gibbs distribution at equilibrium, then for suitable values of 
the thermodynamical parameters (i) condition (la) is satisfied, (ii) the con- 
ditional probability P(t) that the system at time t is in a configuration not 
contained in R is small, and (iii) the relative weight of the configurations 
contained in R is negligible at equilibrium. In this approach for the first 
time both the "static" and the dynamical aspects of the problem are coupled 
in a rigorous way, and, by a simple argument based on the Liouville theo- 
rem, the estimate of the relaxation time can be performed without handling 
the highly nonlinear set of differential equation that any previous approach 
was forced to deal with. 
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In their paper PL are able to perform the calculations only for a very 
special class of potentials (the Kac potentials) in the so-called van der Waals 
limit where the actual interaction is equivalent to a "mean field." By analytic 
continuation they get a class of states whose relaxation times go to infinity 
with the volume. The extension of these results to short-range force systems 
is by no means trivial. The connection between the range of the forces and 
analytic properties is expected to reflect an actual difference in the mechan- 
ism underlying the condensation phenomena. (4'~'7~ 

In a previous paper (8) we have studied in the framework of the PL 
approach a short-range force system: Considering a two-dimensional Ising 
ferromagnet with ( + )  boundary conditions and negative external field and 
assuming the dynamics of a Markovian process, we constructed, suitably 
restricting the configurations at t = 0, a nonequilibrium state with positive 
magnetization such that when the temperature is sufficiently low (i) only 
one phase is present, and (ii) the relaxation time per unit volume is finite and 
can be made very large. This extension of the PL approach to short-range 
force systems was made possible by the very powerful analysis of the rele- 
vant configurations of the Ising system in terms of contours made by Minlos 
and Sinai. (~ 

In the present paper we use a similar technique to study a short-range 
continuous system--the Widom-Rowlinson model--and we show that the 
results and their physical interpretation are the same as those previously 
obtained for the Ising modeI in spite of the different symmetries and dynamics 
involved. 

In Section 2 we define the model and briefly sketch and discuss a geo- 
metrical description of the configurations. ~1~ 

In Section 3 we define the subset of configurations R (our candidate for 
the metastable state) and discuss the "stat ic" properties of our state. Sec- 
tion 4 is devoted to the evaluation of the relaxation time: We define, follow- 
ing PL, the escape rate (i.e., the probability per unit time for the configura- 
tions of the system to move out of R) and work out a rigorous upper bound 
for it. 

In Appendices A, B, and C some useful bounds are derived. In Appendix 
D we check that our candidate for the metastable state is " fa r  away" from 
the actual equilibrium state. 

2. THE MODEL 

The Widom-Rowlinson (WR) model (11) is a classical continuous model 
with two kind of particles, A and B, in which there is a hard-core repulsion 
of range r between unlike particles and no interaction between like particles. 
The activities za and zB and the range r are the only parameters of the model. 
The physical relevance of this model relies on two facts: (1) its behavior, at 
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least as far as symmetry properties are concerned, is very similar to that of 
a real fluid, 3 and (2) it is the only continuous model with short-range forces 
for which the existence of a phase transition is rigorously proven. (12~ 

In fact, Ruelle, associating classes of A - B  particle configuration to 
polygons (contours) on a lattice, was able to prove, for suitable boundary 
conditions, the coexistence of an A-rich phase and a B-rich one. 

This section mainly contains a modification of the geometrical descrip- 
tion introduced by Ruelle that allows us to transfer to the WR model the 
results obtained by Minlos and Sinai for the Ising model. 

A nice feature of this approach, both in the Ising and in the WR model, 
is that the introduction of these contours, far from being a purely technical 
device, allows a more clear and intuitive picture of the microscopic distribu- 
tion of these particles at equilibrium, giving rise, so to say, to a rigorous 
version of the droplet model. 

Following Ruelle, we introduce a square lattice of d x d squares with 
d --- r/(3~/2), so that r is the diagonal of a 3d x 3d square. Our box A is a 
rectangle containing N = lAid x d squares. We introduce the boundary 
condition that the strip composed of the first four squares adjacent to the 
boundary of A cannot contain B particles (A-boundary conditions). I f  we 
consider now an arbitrary configuration in A (consistent with the above 
boundary conditions) and shade all 3d x 3d squares, centered on the small 
squares containing at least one B particle, the boundary of the union of 
the shaded areas will be a polygon of various edge "self-avoiding" closed 
contours. 

Among all these contours we will consider the outer ones (i.e., those 
not embraced by any other contour). We define a chain y as the smallest 
set of outer contours such that if two outer contours have a distance less 
than 8r/(3~/2), they belong to the same chain. 

We further say that two chains are compatible if they can be found in 
the same configuration as disjoint chains. 

Given a chain y, we will call @(7) the (generally disconnected) region 
that has y as boundary. 0(7) will be the region obtained by adding to @(y) 
a strip that contains all the square at a distance less than r from the small 
squares inside but not touching the outer contours belonging to y, allowed 
to contain B particles. 

It is easy to see (1~ that we can write the grand partition function in 
the following way: 

, 

Z(A) = l - I ,  a0(a) (I) 
{Yl,'..,Ys} 1 

3 If the fl particles are invisible, the resulting system of A particles yields a model for 
liquid-vapor transition. In this case zA and zB are related to the temperature and the 

chemical potential of the system. 
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where the primed sum is over all the collections {71 .... ,7s} of compatible 
chains in A; 5(6)(7))  is the grand partition sum over all the A. B particle 
configurations in 0(7) compatible with the presence of the chain Y; and 
E0(.) is the partition sum of a free gas of A particles (we omit the explicit 
dependence of E on ZA and z~ unless it is necessary). The nice feature of 
Eq. (1) is that each contribution to the sum is factorized and each factor is 
related to a different region of the volume A. 

Noting now that the probability of finding a given set of chains 
71, 72,..., 7m in a configuration is 

, }(0(70) Zo(A) 
{~l,...,Ts} 1 

(2) 

where Y' extends over all the collections of compatible chains containing 
71, 72,..., 7m, it can be shown that ~1~ when z• = zB = z is large enough 

RA(Yl . . . . .  7m) ~< exp --~ , ly, I (3) 

where [7~[ is the total length in units d of the contours belonging to 7~, and 
c~ = zR2 /72 .  That is, the higher the activity, the lower the probability of a 
given chain; or, better, the small chains are the most relevant objects in the 
high-activity region. If  we recall the class of A .B  particles associated with a 
chain or a given set of chains, the picture of our system in the high-activity 
region will look like a large sea of A particles with small and rare, uniformly 
distributed "is lands" of B particles. 

The picture not only is in agreement, as it should be, with the existence 
of a phase transition and the breaking of symmetry due to the boundary 
condition, but it actually gives a detailed account of the microscopic struc- 
ture of a pure A-rich phase, singling out the most relevant classes of con- 
figurations. 

To conclude this section, we want to stress that the analysis of these 
systems in terms of contours goes far beyond this point. The probabilities 
defined by Eq. (2) satisfy a set of integral equations, (9,1~ ~ la Kirkwood- 
Saltzburg, <13~ and when the activity is sufficiently high, it is possible, by 
standard techniques, (9,18~ to get for these objects analyticity and cluster 
properties and to check that the system under these conditions is restricted 
to a single phase. 

All the previous arguments can obviously be inverted (A ~ B) when on 
the boundaries of the volume A we have B particles instead of A particles 
and the same formalism will describe the B-rich phase. 
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, 

We start recalling that the very simple and appealing picture given in 
the previous section arises from Eq. (3) only when ZA = Z8 = Z is very high 
and far beyond the critical value. With lower z the picture gets more compli- 
cated; for instance, longer chains are not negligible any more: The approach 
of the critical point is heralded by larger and larger droplets of the opposite 
phase and influence the convergence properties of the coupled set of integral 
equations. 

A similar and even more dramatic phenomenon should be expected 
far away from the critical point, when, given, for instance, A-boundary 
conditions, zB > ZA >> Zorlt. In fact, increasing z~, we break the symmetry 
between A and B particles all over the volume A, giving rise to a volume 
effect, opposite to the boundary condition, that naturally leads in the infinite- 
volume limit to a B-rich pure phase. 

In this case Eq. (3) is modified and we get (cf. Appendix A) 

P(7) <~ exp(-a[Tt  + hzA123[~9(7)I) (4) 

where h = ln(zB/ZA) and [~)(7)] denotes the number of squares in ~)(7)- 
The positive volume term in the exponent enhances the weight of large- 

area droplets and we actually get as an upper bound for the probability of 
a chain of area c 2 the well-known formula discussed by Fisher (3> in the 
droplet model. With this in mind it is easy to convince ourselves that to 
keep the system in a pure A-rich phase when zB > z~ it is at least necessary 
to eliminate all the configurations that give rise to chains that are " too  
large." 

We think worth mentioning that the "drople ts"  we are dealing with 
(the chains) come out naturally from our geometrical description and any 
discrimination against configurations associated with droplets of a given 
size is a well-defined procedure not involving a priori or a posteriori modifica- 
tion of the exact model we started with. 

Calling {7}n the collection of outer contours associated with the A-B 
particle configuration -q, we define 

R~ = {,7: IO(Y)l < c~, V7 E {~,}.} (5) 

and eventually define a state by the following probability density: 

(~'~N~(~7)~NB(~) = ~ A  ~ ~B , ~ e R A  

P^('/) 10, ~7 r R^ (6) 

where K is a normalization constant. 
At this stage c z is completely arbitrary, but we expect the metastability 

requirement listed in the introduction to pin down some sort of "critical 
size" of the droplets. 
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The first condition amounts to requiring that our state is a pure A-rich 
phase. 

It is possible to show (1~ that the investigation of the static properties 
of the state described by Eq. (3) goes exactly along the same lines as that 
of the equilibrium state provided the upper bound given by Eq. (B.I) of 
Appendix B is used. In other words, our state exhibits the same microscopic 
picture given in Section 2 typical of a pure A-rich phase provided that 
1 - 123hc > 0 [h = ln(ZB/ZA)] and zA is sufficiently high (cf. Appendix B). 
Therefore, given the value of zA and z~, we get the following upper bound 
for c: 

e < 1/123h = 1/[123 ln(zdzA)] (7) 

, 

Following Penrose and Lebowitz, (6) we call P(t) the conditional prob- 
ability that the system, being in R at t = O, has escaped by the time t. A 
simple argument based on the Liouville theorem shows that dP(t)/dt has its 
maximal value at t = O, (6) so it is natural to define the escape rate as 

t=0+ P(3t) dP(t) = lira s u p -  (8) 
A = --'-d-/- ~t~0+ 3t 

In order to evaluate an upper bound to A, we need to estimate the probability 
for the system to leave R during the time interval [0, 3t]. 

Let us introduce some more definitions. Given a chain 7', we define its 
"interior boundary"  to be the boundary of the region consisting of all the 
small squares that are inside 7' but not touching it (i.e., the small squares in 
0(7) that may contain B particles). We call the "critical boundary"  of  an 
A. B configuration ~ E R the (possibly empty) set of all d-segments belonging 
to the union of the "interior boundaries" of the chains associated with ~7 
such that if a B particle crosses one of these segments, the resulting configura- 
tion does not belong to R any more. The simplest example is given by a 
chain composed of a unique square contour of side c. 

In this case the "interior boundary" ofT' contains as subsets the "critical 
boundaries" of all the configurations with outer contour 7'. 

Consider the event Eb defined in this way: a B particle is approaching 
a given d-segment b at a distance less than 3t times its component v• of 
velocity perpendicular to b. 

Call Fb the following event: at time zero the configuration of the system 
has a nonempty critical boundary which contains b. Then 

P(3t) = ~ prob(Eb, Fb) + O(3t 2) (9) 
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where prob(Eb,  Fb) is the joint  probabi l i ty  evaluated in the restricted ensemble 
of  Eb and Fb together.  ~ is the set o f  all b's in A that  can be crossed by a 
B particle. The  number  of  such b's is bounded  f rom above by IAI. Here  
O(St 2) is the cont r ibut ion  to P(St)  o f  all the events that  involve more  than  
one particle. (6) 

I f  a configurat ion -q satisfies the condit ion stated in the definition of  
Fb, then, a m o n g  the chains associated with r], there must  exist a set o f  chains 
(7,)b = {7,1,..., 7,~} near  b that,  after the B particle has crossed b, join together  
to fo rm a new chain of  area  > c 2. 

O f  course one of  these chains, say 7,1, contains b in its interior bounda ry  
(The example  ment ioned before corresponds  to v = 1.) 

We can write 

P(3t)  = ~,, ~ ] exp dv pAR(7,, ..... 7'v, r) dr (10) 
b ~ , ~  yl,..., YV 

where the second sum is over  all the above-ment ioned  sets o f  chains (7,)~ = 
7'1 ..... 7,v and A is the normal iza t ion  factor  o f  the Maxwell  distribution. 

is the rectangle b x v 8t and pAR(7,1 ..... 7'~; r) dr is the joint  probabil i ty,  
in the restricted ensemble,  of  finding the chains 7,, ..... 7,~ in A and a B par-  
ticle in the volume dr near  r. So we have 

3. = l im sup ds pAR(7,1 ..... 7'v; ~:) ( i l )  

where ~0 = (2~r/~m) t/2 is a kinetic factor  and f is a generic point  of  b. 
F r o m  Appendix  C we see that  

PAR(Y1 ..... 7,~; ~) 

[ )] ~< zB exp 121(za + z ~ ) d  2 - a(1 - 123hc) ~ly*l - 121 

where a = zad=/4. Then  we obtain  

a <~ IAI~o dze exp[121(z,~ + zB)d = + a(1 -- 123he)121] 

x ~ exp[ -cz (1  - 123hc) ~ ]Y,I 

(12) 

(13) 

N o w  f rom the definition of  the sets YI,-.., Yv tha t  appea r  in Eq. (13) we 
see tha t  

v 

~ ,  [Y,[ t> 4( c= - 2) 1'2 > 4(c - 1) 
1 
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The number of  events characterized by the presence of  one of these sets 
of  chains ),~ ,..., ),~ with 

1 

is at most 17.19.3 6~. (This can be shown by a slight modification of the 
argument contained in Ref. 12.) 

So we eventually obtain 

.;~ ~< IA[9~ dzB exp[(za + zB)121d 2 + ~(1 -- 123he)121] 

x 17.19.(27) ~c-1 exp[a(1 - hc123)4] 

x {exp[-a(4c  - 4hc2123]}/{1 - exp[ -~(1  - 123hc) - 3 In 3]2} 

(14) 

Then, when 2[~(1 - 123he) - 3 In 3] is greater than In 2 we can write 

,~/tAI <~ G(zA, zB) exp[--4eu(za, zB) + e2v(zA, zB)] (15) 

where 

G(ZA, ZB) = ~ d2 B exp[121d2(ZA + z~) + 125c~]t7.19.2/27 

4u(z,~, zB) = (123. 125-h + 4)a - 3 In 3 (16) 

v(zA, zB) = 4h. 121a 

We recall that ~ = z~d2/4 and h = ln(z~/za). 
By minimizing with respect to e, we get 

)~/tAI <~ G(za, zB) exp(-4u2/v) 

This bound, as expected, is an exponentially decreasing function of 
za when h is sufficiently small. 

We can then conclude that, at least when the activities of  the two species 
of  particles are both sufficiently high but close enough together, the relaxa- 
tion time can be made very large. 

As far as a purely theoretical statement is concerned, this would con- 
clude the story, but if we try to get figures out of  Eq. (17), the actual values 
of  the activities come out extremely large and the  range of metastability 
very narrow. Whether this is due to the estimates that we have performed 
or whether it is an actual feature of  our candidate for the metastable state 
is still an open question. 

A P P E N D I X  A 

In this appendix we will give estimates for the density of B particles 
We will find a relation between the average number ~n~}A of B particles in 
a volume A and the average number  (s}A of  d x d squares occupied by B 
particles. 
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These estimates will still hold if we impose additional conditions on 
the configurations (such as the A-boundary condition or the restriction to R 
of the set of allowed configurations). We have 

(s} 

where s = sl,..., sm is a "configuration" of occupied squares. The primed 
sum runs over all the allowed sets {s}. (For instance, if we have to evaluate 

R (nB)A,a, namely the average number of B particles in the restricted ensemble 
with A-boundary conditions, then the sum is over all s compatible with these 
boundary conditions). 

P(s) is the probability of the set of all allowed A. B configurations that 
give rise to s, and (nB)~ is the average number of B particles in [,.) lm(0 S~ with the 
condition that every s~ is occupied by at least one B particle and every square 
not in the set s contains no B particle. We have 

(nB}~ = ,~A ,B z?4Az~nB dX,~ A dY,~ W~(X,~.~, Y,B) 

• ,~A ,~ z ~ z ~  dXnA d Y ~  W~(X,~, Y~) (A.2) 

where (X~, Y~B) stands for an AB particle configuration 

xl ,  x2 ..... x,~,~, Yl,  Y~,..., Y~B, dX,~ A = dxl ""dx,~ A , d Y ~  _ dyl ...dy,~ 
n A ! l'l B ! 

and 

W s =  W~(X, Y ) [ ~  I~(Y)][1 - I,x\u ~,] (A.3) 

where W(X,  Y) = 0 if the hard core exclusion is violated by (X, Y) and = 1 
otherwise. 

I~(Y) = Ia(yz,..., y,~) = 1 if at least one of the y~ lies in the volume ~;  
=0  otherwise. 

Writing YtY,~ for the B-particle configuration; y~ ..... Y-B-~, the follow- 
ing identity holds: 

m m 

1 1 

+ ~ {k]-~ ~ I~k(Y,y,,)l~,(y,~)[1- I(Y,y,~)]} (A.4) 

We write the numerator in Eq. (A.2) as 

zB NnA Nn z?4,z~ ax,~, dY,~, W,(xl,..., x,~,, y ..... Y,~, Y,~+I) 

(A.5) 
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and decompose Ws into the two terms suggested by the identity (A.4), using 
the inequality 

W(x~ .... , x ~ ,  y~,..., y ~ ,  y~+~) <~ W(x~ .... , x~ ;  y~ ..... y~)  

and noting that the range of any variable y~ is rnd 2, we have 

f t <nB)~ < md2zB + zB .A ,~B zY4~z~ dX.A dg .  B W~'(X, Y) 

b- 
• [~,.a ~o.B Z~z$B t:V(X, Y) (1.6) 

where W~'(X. Y) [see Eq. (1.4)1 is such that 

W~'(xl ..... x.A; y~ ..... y.~ + ~) <~ ~ W~,(xt,..., x .  a; Yl .... , y.~)I~,(y.. + ~) 

with s~ obtained by removing the square i from s. Inequality (A.6) then 
becomes 

(n~)~ < md~z~(1 + max Zs (A.7) 

where 

= zA.~zs~ dX~a dY,, Ws(X, Y) (A.8) Z S  nA ~B B 

and similarly for Z~. 
Now we are left to the problem of evaluating such a maximum. Writing 

q for the 1 ld • 1 ld square centered at the small square s~ it is evident that 

:: :: f dxx.., dx,a dy~ ... dy,, W~(X, Y) Zs >~ ~A n~ ZA! zB, J(A\q)~a u ~(ks~) 
cO ~ c~ ~ n A , r  P , r  l /* ~* 

0 A"  F "  " ,J(A\q)aA d(s*,)rs 

• fE dy~+~...dyp+l Ws,(X,y~+I .... ,Y~+t) 
U k ~ Is~] ~ 

Then we obtain 

Zs>/ [exp(z~d 2 ) -  1] ~A ~nf inBt  

• f,A o .Adxl""dx.Af dYl""dy.. Ws(X, 

(A.9) 

(AAO) 
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Considering now Z~t, we have 

io :O 1=0 

x Q dXl'"dx'~(A\q) dXg+l"'dx,+t fAbs 

Then. using the inequality 

W.,(x~ ..... x~, x~+~,..., x~+z; Y) <~ rV~,(x~+~ ..... x.+z; Y) 

we obtain 

dyl. . .dy. .  W~,(X, Y) 

(AA0 

Z~ -=- exp(z~121d 2) ,~a ,~B hA! n~! 

x f dx l . . .dx ,~f  dyl...dy,~ B W,,(X, Y) (A.12) 
A\q)nA *IAnB 

Then by (A.7) we obtain the required relations 

Z~,/Zs <~ exp(121d2zA)/(exp d~zB -- 1) (A.13) 
and 

(n~)~ <~ zBd~m[1 + exp(121d2zA)/(exp d2z~ - 1)] (A.14) 

In order to get a good estimate from Eq. (A.14), we use the FKG inequali- 
ties. (1~ Noting that the previously introduced functions Ia(Y) are non- 
decreasing (in the sense of Lebowitz and Monroe(14~), we find for zB < 
122za that 

<~ 122mzAd~{1 + exp(t21z.4d2)/[exp(122zAd 2 - 1) - 1]} 

<~ 123zAmd ~ (A.15) 

The last inequality holds when 

exp(121zad2)/[exp(122ZAd 2) - 1] ~< 1/122 

which is satisfied for sufficiently high za. 
Finally, Eq. (A,1)implies 

(nB)A.~a.~, <~ 123zad2(sB)a.~a.., 

A P P E N D I X  B 

In this appendix we give estimates for the chain correlation functions. 
Suppose zB > zA and A-boundary conditions. Write ~#(~(7)) for the set of 
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all configurations of  A. B particles internal to 19(7 ) and having the chain 7 
as their outer contour. From any configuration ~7 E J/(O(7)) we obtain a 
class of  configurations as follows. 

I. All A particles interior ~1~ to some outer contour belonging to 
are changed into B particles and vice versa. 

2. Let G(7) be the band consisting of all the small squares that have one 
side or corner touching the outer contours belonging to 7: A particles are 
placed in an arbitrary manner in G(7). We write J/*(~)(7)) for the collec- 
tion of all configurations obtained by applying this transformation to con- 
figurations in J[(O(y)). The following relation holds: 

l ' , ]  E(~)(7), ZA, Z~) _ E(O, zA, ZA) exp -2- ((nB)~.z~.~, - (nB)~.~,) 
z*(~)(~), zA, z~) z*(~ ,  zA, zA) L .~  

(B.1) 

where E(O(7'), zA, zB) [E*(O(y), zA, zB) is the statistical sum over Jg(O(7')) 
[J{*(~)0'))] and (nB)~.z~,~, * [(nB)~A.~'] is the average number of B particles 
in (7)(y) in the ensemble defined by dr [J/*(O(~,))] with activities za 
and z'. 

From Appendix A we see that 

<nB>~(y~.~,~, ~< 123d2zA[O@)] (B.2) 

where is the number of  small squares in 0(~,). 
Now calling pa(~,) the probability of  finding the chain 7' present, from 

Ref. I2 we have 

p~(~,) <. Z(O(~,))/E*(O(~,)) (B.3) 

We eventually get 

pa(~') ~< exp[ -~b ' [  + 123hzAd~lO0')[] (B.4) 

where l~'t is the total length in units of d of the chain ~, and h = ln(zB\zA), 
'~x = ZAd2/h. 

Now let pAR(~'~,..., 7'm) be the chain correlation function [see Eq. (3) 
of section 1] in the restricted ensemble defined by (see Section 3). By a 
simple extension of the arguments used before, (~~ we have 

O~n(~'~ ~'m) ~< exp - ~ '  l~[ (B.5) 

where a' = a(1 - 123hc). 

A P P E N D I X  C 

In this appendix we evaluate the quantity pAR(y1 ..... ~'v; f), namely the 
joint probability density in the restricted ensemble of  finding the chains 
~,1 ..... ~,, and a B particle in ~:, where ~: is the generic point of a d-segment 
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belonging to the interior boundary of the chain yl .  (See Section 4.) Consider 
the small square Sb c O(yl) from the interior adjacent to the segment b 
containing ~:. 

Consider a rectangle 4 ~ ~: strictly contained in sb. Then 

PAR(Y1,..., 7'v ; ~:) = lira 1 ..... rv; (c .1 )  

where paR(y1,..., yv; 4) is the joint probability of having y, .... , y~ and a B 
particle in e. We have 

p^R(y i ..... y~; 4) 

= y i  ~ y~ 0 i Yt . 
Lyl } 'v . . . . ,y  s 1 

where the sum is over all the sets of compatible chains of area ~< c = contain- 
ing yl,..., y~; E(@(,%)) is the partition function over those configurations 
belonging to ~'(~)(y)) in which a B particle is contained in 4; E0(~) is the 
partition function of a free gas of A particles in the volume fL 

Call q the 1 ld  x 1 ld square centered at the small square So ~ 4. We 
have 

~'(O(y~)) ~< ~(g)(y~)\q)E'(q) (C.3) 

where E'(q) is the partition function over all A .B configurations in q in 
which at least one B particle is contained in 4. s is the partition 
function over all A-B configurations in (7)(yz)\( q ~ (7)(yl)) compatible with 
the presence of Y,. We have 

s ~< ZBIEi exp[121d2(za + zB)] (C.4) 

Moreover, using the transformation dr162 defined in 
Appendix B, we obtain 

z (a) 1> A\ , 
2 

Now taking into account that the total length of that part of the boundary 
of @(y~) that is contained in O(~)\q is at least IY~I - lql/d ~, by Eq. (B.5) 
of Appendix B we have 

pAR(y~ ..... yv; ~) ~< le[Z~ exp 121d2(za + zB) + ~'121 -- ~' IY, I 
t 

where a' = ~(1 - 123he). 
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A P P E N D I X  D 

In this appendix we prove that the relative weight PR of the configura- 
tions in R is negligible at equilibrium. We may write 

p~ = EnA(A, ZA, ZB) EnA(A, zA, zB) EnA(A, zA, ZA) E~(A, ZA, ZB) 
~--A(A, ZA, ZB) = EnA(A, ZA, ZA) ~ ( A ,  ZA, Z~) EA(A, ZA, ZB) 

where the superscripts A and B label the boundary conditions in A and the 
subscript R means that the partition function is evaluated in the restricted 
ensemble. It is easily seen that 

EB(A, ZA, ZB)/EA(A, ZA, ZB) <~ exp[rlOA]zB] 

where 1?A[ is the perimeter of A. So, noting that 

ERA(A, ZA, ZB) -~ EnB(A, ZA, ZA) <~ EB(A, ZA, Z4) 

we have 

F; ] PR <~ exp[rlOA]zB] exp -7 ((rIB)A,A,Z.~,Z"- (/'tB)B,A,zA,z') 
t- ~A 

with an obvious meaning to the symbols. 
Now let (SB)mA,~A,~ be the expectation value of the number of small 

squares occupied by B particles in A with B-boundary conditions; then, 
from the FKG inequalities (~4~ we have 

(nB)B,A,ZA,Z" ~ (nB)B,A,ZA,ZA ~ (SB)B,A,ZA,ZA 

Following Ruetle, (~2> we see that for sufficiently large za 

(S~)B,A,ZA,J[A[ /> 1 /484-  ~V(U) 
where 

{3 exp[3(4 In 3 - x)]} 2 ZAd 2 
*p(X) = [] _ exp(4 In 3 -- x)] 4' c, = - - ~  

f o r a  > 41n3, 
Moreover, from Appendix A we see that 

n R ( ~)A,A,zA,~' <~ 123zAd2(sB)~,A,*A,*" <~ 123ZAd2(sB)~,A,ZA,~ 

where the last inequality follows from the F K G  inequalities (see Appendix 
A). We have for cd = a(1 - 123hc) 

(S~)A.~,zA.z~ < ~(~') 

We eventually obtain 

P~ ~< exp[r[0A[zB 

+ IAI [ln(zB/zA)](123d2z,~(a ') + 9(a) -- 1/484)] 
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So that  when z is sufficiently large and ~' >/ 4 in 3 we have 

lim PR = 0 

A C K N O W L E D G M E N T  

We are greatly indebted to D. Capocaccia for many  helpful discussions 

and  criticisms. 
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